Rabu, 08 April 2020

Vektor dan Pembahasannya

Jenis – Jenis Vektor

Vektor juga memiliki beberapa jenis tersendiri, yaitu sebagai berikut :
  • Vektor Posisi :
Adalah Suatu vektor yang posisi titik awalnya di titik 0 (0,0) dan titik ujungnya di A (a1, a2)
Vektor Nol :
Adalah Suatu vektor yang panjangnya nol dan dinotasikan  . Vektor nol tidak memiliki arah vektor yang jelas.
  • Vektor Satuan :
Adalah Suatu vektor yang panjangnya satu satuan. Vektor satuan dari   adalah = 
  • Vektor Basis :
Adalah sebuah vektor satuan yang saling tegak lurus. Dalam vektor ruang dua dimensi (R2) memiliki dua vektor basis yaitu  = (1, 0) dan   = (0, 1).

Macam – Macam Beserta Operasi Vektor

Vektor juga memiliki beberapa macam – macam nya, yaitu sebagai berikut :
  • Vektor di R:
Panjang sebuah segmen garis yang menyatakan vektor   atau dinotasikan sebagai   Panjang vektor yaitu sebagai :
Panjang vektor tersebut ialah dapat dikaitkan dengan sudut   yang dibentuk oleh vektor dan sumbu x positif.
Operasi Vektor di  R:
⇒ Penjumlahan dan Pengurangan Vektor di R:
Dua vektor atau lebih dapat dijumlahkan dan hasilnya dapat disebut resultan. Penjumlahan vektor secara aljabar dapat dilakukan dengan cara menjumlahkan komponen yang juga seletak. Jika  maka :
Penjumlahan secara grafis dapat dilihat pada gambar dibawah berikut ini :
Dalam pengurangan vektor ini, berlaku sama dengan penjumlahan yaitu sebagai berikut ini :
Sifat – sifat dalam penjumlahan vektor adalah sebagai berikut :
⇒ Perkalian Vektor di RDengan Skalar :
Suatu vektor juga dapat dikalikan dengan suatu skalar (bilangan real) dan akan menghasilkan suatu vektor baru. Jika   adalah vektor dan k merupakan skalar. Maka perkalian vektor dapat dinotasikan  :
Dengan Keterangan :
  • Jika k > 0, maka vektor   searah dengan vektor  .
  • Jika k < 0, maka vektor   berlawanan arah dengan vektor  .
  • Jika k = 0, maka vektor   adalah vektor identitas  .
Secara grafis perkalian ini juga dapat merubah panjang vektor dan dapat dilihat pada tabel dibawah berikut ini :
vektor matematikaSecara aljabar perkalian vektor   dengan skalar k juga dapat dirumuskan sebagai berikut ini :
⇒ Perkalian Skalar Dua Vektor di R2 :
Perkalian skalar dua vektor dapat disebut juga sebagai hasil kali titik dua vektor dan juga dapat ditulis sebagai :

Contoh Soal Vektor

Contoh Soal 1 :
Diketahui ada titik A(2,4,6), titik B(6,6,2), dan titik C(p,q,-6). Apabila titik A, B, dan C segaris maka tentukan nilai p + q !
Penyelesaian :
Jika titik – titik A, B, dan C segaris maka vektor   dan vektor   bisa juga searah atau berlainan arah. Sehingga akan ada bilangan m yang merupakan sebuah kelipatan dan bisa membentuk persamaan berikut ini :
Jika B berada diantara titik A dan C, maka akan diperoleh :
Sehingga Dapat Diperoleh :
Maka kelipatan m dalam persamaan :
Diperoleh :
Jadi, dapat disimpulkan :
p + q = 10 + 14 = 24

Tidak ada komentar:

Posting Komentar